How I Built a Telegram Bot That Combines GPT-4 and GPT-3

Â
Working video tutorial https://www.linkedin.com/feed/update/urn:li:activity:7175439702349508609/
How It Works
- Users send a photo of their ingredients or manually enter them as text.
- The bot processes the image using GPT-4 to extract ingredients.
- GPT-3 generates three high-protein, healthy recipes based on the identified ingredients.
- Users can choose a recipe, get nutritional info, or subscribe for premium features.
Tech Stack
- Telegram Bot API: Handles user interactions and commands.
- GPT-4: Used for advanced image recognition to extract ingredient lists from photos.
- GPT-3: Generates recipes and handles conversational interactions.
- Stripe Integration: Provides subscription-based premium access.
- Flask: Used for webhooks or additional server-side logic.
Features of the Bot
- Image-Based Ingredient Detection: Users send a photo of their fridge or pantry, and the bot identifies the ingredients using GPT-4.
- Text-Based Entry: Users can manually list their ingredients if they prefer.
- Recipe Suggestions: GPT-3 generates three concise recipe suggestions tailored to the ingredients.
- Premium Access: Offers extended features such as unlimited usage and additional recipe details for subscribers.
- Referrals and Coupons: Users can refer friends or use coupon codes for free trials.
- Interactive Menu: Includes options for tutorials, feedback, and support.
Code Highlights
GPT-4 for Image Recognition
def generate_feedback_img(image_path): base64_image = encode_image(image_path) headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}" } payload = { "model": "gpt-4-vision-preview", "messages": [ { "role": "user", "content": [ { "type": "text", "text": "List all food items in this image, separated by commas. Be concise." }, { "type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"} } ] } ], "max_tokens": 500 } response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload) return response.json()['choices'][0]['message']['content']
GPT-3 for Recipe Generation
def generate_response_gpt3(new_text, user_id): history = user_histories.get(user_id, []) history.append({"role": "user", "content": new_text}) openai.api_key = api_key chat_completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=history, max_tokens=500, temperature=0.7 ) response = chat_completion.choices[0].message['content'] history.append({"role": "assistant", "content": response}) user_histories[user_id] = history return response
Telegram Bot Integration
def MyTelegramBot(): TOKEN = config.BOT_TOKEN updater = Updater(TOKEN, use_context=True) dp = updater.dispatcher dp.add_handler(CommandHandler("start", start)) dp.add_handler(CommandHandler("tutorial", tutorial)) dp.add_handler(MessageHandler(Filters.photo, photo_handler)) dp.add_handler(CallbackQueryHandler(button_handler)) updater.start_polling() updater.idle()
What I Learned
- Combining APIs: GPT-4 for vision and GPT-3 for language generation is a powerful duo.
- User Experience Matters: Adding interactive features like tutorials and feedback creates a user-friendly experience.
- Scalability: Handling subscriptions and usage limits ensures the bot is sustainable for long-term use.